a: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc DBC chung
Do đó: ΔBKH đồng dạng vớiΔBDC
Suy ra: BK/BD=BH/BC
hay \(BD\cdot BH=BK\cdot BC\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc KCH chung
Do đó: ΔCKH đồng dạng với ΔCEB
Suy ra: CK/CE=CH/CB
hay \(CH\cdot CE=CK\cdot CB\)
=>\(BH\cdot BD+CH\cdot CE=BC^2\)
b: Xét ΔADB vuông tạiD và ΔAEC vuông tại E có
góc DAB chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE đồng dạng với ΔABC