Bài 1:
Giải:
Đặt \(a=5k+4\)
Ta có: \(a^2=\left(5k+4\right)^2=25k^2+40k+16\)
\(=25k^2+40k+15+1\)
\(=5\left(5k^2+8k+3\right)+1\)
\(\Rightarrow a^2\) chia 5 dư 1
Vậy...
Bài 2:
a, Thay x = 87, y = 13 vào A có:
\(A=87^2-13^2=\left(87+13\right)\left(87-13\right)\)
\(=100.74=7400\)
Vậy A = 7400
b, \(B=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
Thay x = 101 \(\Rightarrow B=100^3=1000000\)
Vậy B = 1000000
c, \(C=x^3+9x^2+27x+27=\left(x+3\right)^3\)
Thay x = 79 \(\Rightarrow C=82^3\)
Vậy \(C=82^3\)
1.
Theo đề bài ta có:
\(a=5x+4\left(x\in N\right)\)
\(a^2=\left(5x+4\right)^2=25x^2+40x+16=25x^2+40x+15+1=5\cdot\left(5x^2+8x+3\right)+1\)
\(a^2-1=5\cdot\left(5x^2+8x+3\right)⋮5\)
\(\Rightarrow a^2\) chia 5 dư 1
2.
a,
\(x^2-y^2\\ =\left(x+y\right)\left(x-y\right)\\ =\left(87+13\right)\left(87-13\right)\\ =100\cdot74\\ =7400\)
b,
\(x^3-3x^2+3x-1\\ =\left(x-1\right)^3\\ =\left(101-1\right)^3\\ =100^3\\ =1000000\)
c,
\(x^3+9x^2+27x+27\\ =\left(x+3\right)^3\\ =\left(97+3\right)^3\\ =100^3\\ =1000000\)
Bài 2: \(a.x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)
b. \(x^3-3x^2+3x-1=\left(x^3-1\right)-\left(3x^2-3x\right)\)
\(x^2\left(x-1\right)-3x\left(x-1\right)=\left(x-1\right)\left(x^2-3x\right)\)
tại x=101, ta có:
\(\left(101-1\right)\left(101^2-3.101\right)=989800\)