B1: Cho hình thang cân ABCD ( AB // CD; AB < CD ). Biết AC cắt BD tại O và góc DOC = 600. Gọi I, J, K theo thứ tự là trung điểm OD, OA, BC. CM tam giác IJK đều.
B2: Cho x, y thỏa mãn 2x + y = 6.
Tìm giá trị nhỏ nhất của biểu thức A = \(4x^2+y^2\)
B3: Cho x, y thỏa mãn \(x^2+y^2=50.\) Tìm giá trị nhỏ nhất và lớn nhất của biểu thức B = xy
Bài 2. Áp dụng bđt Bunhiacopxki :
\(36=\left(1.\sqrt{4}.x+1.y\right)^2\le\left(1^2+1^2\right)\left(4x^2+y^2\right)\)
\(\Rightarrow4x^2+y^2\ge\frac{36}{2}=18\)
Suy ra Min A = 18 <=> \(\begin{cases}y=2x\\2x+y=6\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\y=3\end{cases}\)