Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

2. Cho x, y là các số dương thỏa mãn x + y \(\le\) 1. Tìm giá trị nhỏ nhất của biểu thức

A = \(\frac{1}{x^2+y^2}+\frac{2}{xy}\)

Hoàng Lê Bảo Ngọc
14 tháng 11 2016 lúc 18:56

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Ta có : \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

\(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}=6\)

\(\Rightarrow A\ge10\)

Đẳng thức xảy ra khi đồng thời hai bđt trên xảy ra, tức là x = y = 1/2

Vậy .........................