cos\(\alpha\)=\(\dfrac{+}{-}\)\(\sqrt{1-sin\alpha^2}\)=\(\dfrac{+}{-}\dfrac{\sqrt{3}}{2}\)
cos\(\alpha\)=\(\dfrac{+}{-}\)\(\sqrt{1-sin\alpha^2}\)=\(\dfrac{+}{-}\dfrac{\sqrt{3}}{2}\)
cho tam giác abc đều cạnh a có 2 đỉnh B,C nằm trong mặt phẳng (alpha), đỉnh A cách mp 1 đoạn= a/2
a. Tính sin( mp (alpha),(ABC))
b. Gọi E, F lần lượt là các điểm nằm trên AB,AC sao cho AE=2/3.AB, AF=AC/3. Tính diện tích hình chiếu của tam giác AEF trên mp( alpha).
Cho phương trình : 3cosx + cos2x - cos3x + 1 = 2sinx.sin2x . Gọi \(\alpha\) là nghiệm lớn nhất thuộc khoảng ( 0;2\(\pi\) ) của phương trình . Tính \(sin\left(\alpha-\frac{\pi}{4}\right)\) .
Tìm m để hàm số \(y=\sqrt{\dfrac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in[-\dfrac{\pi}{2};\dfrac{\pi}{2}]\)
1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?
2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?
3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)
4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?
5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?
6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?
7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?
8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?
9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?
10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?
11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)
giải phương trình: \(\tan\left(\dfrac{3}{2}-x\right)+\dfrac{\sin x}{1+\cos x}=2\)
Giải pt sau: \(\sin^2x+\sin2x-2\cos^2x=\dfrac{1}{2}\)
Tìm giá trị lớn nhất của các hàm số sau :
a) \(y=\sqrt{2\left(1+\cos x\right)}+1\)
b) \(y=3\sin\left(x-\dfrac{\pi}{6}\right)-2\)
\(sin^4x-cos^2x=1\\ \dfrac{3}{cos^2x}+2\sqrt{3}.tgx-6=0\)
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)