\(3cosx+2cos^2x-1-\left(4cos^3x-3cosx\right)+1=4cosx.sin^2x\)
\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx\left(1-cos^2x\right)\)
\(\Leftrightarrow3cosx+cos^2x-2cos^3x=2cosx-2cos^3x\)
\(\Leftrightarrow cos^2x+cosx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm lớn nhất trên \(\left(0;2\pi\right)\) là \(\alpha=\frac{3\pi}{2}\)
\(sin\left(\frac{3\pi}{2}-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)