a: \(=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2}\cdot\dfrac{1}{4}=\dfrac{1}{100}\)
b: \(=\dfrac{\left[5^3\left(5-1\right)\right]^3}{5^{12}}=\dfrac{5^9}{5^{12}}\cdot\dfrac{4^3}{1}=\dfrac{4^3}{5^3}\)
c: \(=\sqrt{1.8^2}=1.8\)
a: \(=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2}\cdot\dfrac{1}{4}=\dfrac{1}{100}\)
b: \(=\dfrac{\left[5^3\left(5-1\right)\right]^3}{5^{12}}=\dfrac{5^9}{5^{12}}\cdot\dfrac{4^3}{1}=\dfrac{4^3}{5^3}\)
c: \(=\sqrt{1.8^2}=1.8\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
bài 1: tính
a) \(\dfrac{5^4.20^4}{25^5.4^5}\) b)3,5-\(\left(-\dfrac{2}{7}\right)\) c)\(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}\) d)\(15.\left(-\dfrac{2}{3}\right)^2.-\dfrac{7}{3}\) e)\(\left(\dfrac{9}{25}-2.8\right):\left(3\dfrac{4}{5}+0,2\right)\) g)\(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{4}{5}\) h)\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\) j)12.\(\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\) k)\(\dfrac{13}{25}+\dfrac{6}{41}-\dfrac{38}{25}+\dfrac{35}{41}-\dfrac{1}{2}\) l)12,5.\(\left(-\dfrac{5}{7}\right)+1,5.\left(-\dfrac{5}{7}\right)\) m)\(\sqrt{\dfrac{64}{25}}.3\dfrac{1}{2}-\dfrac{3}{5}.3\dfrac{1}{2}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
Bài 1 :
a) Tính B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.35}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.\left(\sqrt{196}\right)^3}\)
b)Tìm x biết : \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|-3,2+\sqrt{\dfrac{4}{25}}\right|\)
c)Tính \(\left|3x+1\right|>4\)
1. Giải \(a,\sqrt{4}-\sqrt{9x}+\sqrt{25x}=8\) \(b,\sqrt{\dfrac{1}{4x}}+\sqrt{\dfrac{1}{9x}}-\sqrt{\dfrac{1}{36x}}=\dfrac{2}{3}\)
2. \(A=\dfrac{1}{\sqrt{1\cdot2018}}+\dfrac{1}{\sqrt{2\cdot2017}}+...+\dfrac{1}{\sqrt{k\left(2018-k+1\right)}}+...+\dfrac{1}{\sqrt{2018\cdot1}}\)
So sánh A với \(2\cdot\dfrac{2018}{2019}\)
3.Cho abc=201. Tính\(\dfrac{201a}{ab+201+a+201}+\dfrac{b}{cb+b+201}+\dfrac{c}{ac+c+1}\)
4.\(B=\left(\dfrac{1-x^3}{1-x}+x\right)\cdot\left(\dfrac{1+x^3}{1+x}-x\right)\) a, Rút gọn B b, tìm x để B=64
5. Tìm x: \(\left|x-2\right|-2\left|x+1\right|=3-2\left(1-2x\right)\)
b, \(\left(\dfrac{4}{5}\right)^x\) - \(\sqrt{\left(\dfrac{2}{5}\right)^4}\) = \(\sqrt{2^3+3^3-19}\) - \(/-3\dfrac{12}{25}/\)
Tính hợp lí nếu có thể
a) \(\left(\dfrac{5}{7}-\dfrac{7}{5}\right)-\left[\dfrac{1}{2}-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
b) \(\dfrac{2}{15}:\left(-5\dfrac{4}{5}\right).2\dfrac{5}{12}+\sqrt{1\dfrac{9}{16}}:\left(-\dfrac{3}{4}\right)\)
1. tính giá trị của các biểu thức sau
a. \(15\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)\)
b. \(\sqrt{0,16}-\sqrt{0,25}\)
Thực hiện 1 phép tính
\(\dfrac{1}{4}+\dfrac{-3}{8}\) B,\(\dfrac{2^{10}.3^4}{3^5.2^8}\)
\(0,5.\sqrt{100}-\sqrt{\dfrac{1}{9}}\)
d,\(4\dfrac{5}{9}:\left(\dfrac{-5}{7}\right)+5\dfrac{4}{9}:\left(\dfrac{-5}{7}\right)\)