Với \(a\in Z\), 5 là số nguyên tố nên theo định lí Phéc-ma ta có:
\(a^5-a\) \(⋮5\)
Mà theo đề \(a^5⋮5\) nên a \(⋮5\) hay \(a^2⋮25\) và 150n \(⋮25\)
Vậy \(a^2+150n\) \(⋮25\)
Với \(a\in Z\), 5 là số nguyên tố nên theo định lí Phéc-ma ta có:
\(a^5-a\) \(⋮5\)
Mà theo đề \(a^5⋮5\) nên a \(⋮5\) hay \(a^2⋮25\) và 150n \(⋮25\)
Vậy \(a^2+150n\) \(⋮25\)
Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5
Chứng minh rằng
A. 8^5+2^11 chia hết cho 17
B.19^19+69^19 chia hết cho 44
chứng minh rằng \(\left(2n+5\right)^2-25\) chia hết cho 8
Chứng minh rằng (2n + 5)2 - 25 chia hết cho 4 với mọi số nguyên n
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên
Chứng minh rằng với mọi số nguyên a và b :
a, a3b - ab3 chia hết cho 6
b, a5b - ab5 chia hết cho 30
1. Cho A=4a^2b^2-(a^2+b^2-c^2)^2 trong đó a,b,c là độ dài 3 cạnh của một tam giác.
C/m rằng A>0
2.Chứng minh rằng:
a) 21^10-1 chia hết cho 200
b)39^20+39^13 chia hết cho 40
c) 2^60+5^30 chia hết cho 41
d)2005^2007+2007^2005 chia hết cho 2006
Với mọi số tự nhiên n,dat an=3n2++6n+13
â, chứng minh rằng nếu hai số ai,aj(i,j thuộc N) không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì ai+aj chia hết cho 5
2 chứng minh rằng :
a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)chia hết cho 6 với a∈Z
b)\(a\left(2a-3\right)-2a\left(a+1\right)\)chia hết cho 5 với a∈Z