Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thành Minh

A = x2 + y2 +z2 + 2x - 4y + 6z = -14

Tính x + y + z

mọi ng ơi giúp mik vs

Khôi Bùi
22 tháng 10 2018 lúc 16:34

Ta có : \(A=x^2+y^2+z^2-2x-4y+6z=-14\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\left(1\right)\)

Do \(\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y;\left(z+3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\\z+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\\z=-3\end{matrix}\right.\)

\(\Rightarrow x+y+z=-1+2-3=-2\)

Vậy \(x+y+z=-2\)


Các câu hỏi tương tự
erza sarlet
Xem chi tiết
erza sarlet
Xem chi tiết
erza sarlet
Xem chi tiết
erza sarlet
Xem chi tiết
Tuyển Nguyễn Đình
Xem chi tiết
Nguyễn Lê Ngọc Linh
Xem chi tiết
Thu Thủy Nguyễn
Xem chi tiết
Trần Bảo Ngânn
Xem chi tiết
Nguyễn Long
Xem chi tiết