Bài 1:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2(a^2-2a+1)+3\)
\(=(a^2-a)^2+2(a-1)^2+3\)
\(=a^2(a-1)^2+2(a-1)^2+3=(a-1)^2(a^2+2)+3\)
Vì \((a-1)^2\geq 0,\forall a\in\mathbb{R}; a^2+2>0, \forall a\)
\(\Rightarrow A=(a-1)^2(a^2+2)+3\geq 0+3=3\)
Vậy \(A_{\min}=3\Leftrightarrow (a-1)^2=0\Leftrightarrow a=1\)
Bài 2:
a)
\(M=3xyz+x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)\)
\(=3xyz+x^2y+x^2z+yx^2+yz^2+zx^2+zy^2\)
\(=(x^2y+xy^2+xyz)+(y^2z+yz^2+xyz)+(zx^2+z^2x+xyz)\)
\(=xy(x+y+z)+yz(y+z+x)+xz(z+x+y)\)
\(=(x+y+z)(xy+yz+xz)\)
b)
\(Q=(a+b+c)^3-a^3-b^3-c^3\)
\(=[(a+b)+c]^3-a^3-b^3-c^3\)
\(=(a+b)^3+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=a^3+b^3+3ab^2+3a^2b+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=3ab(a+b)+3(a+b)c(a+b+c)\)
\(=3(a+b)[ab+c(a+b+c)]=3(a+b)[a(b+c)+c(b+c)]\)
\(=3(a+b)(b+c)(a+c)\)