Lời giải:
a) Ta có:
\(B=-x^2+6x+5=14-(x^2-6x+9)=14-(x-3)^2\)
Vì \((x-3)^2\ge 0, \forall x\in\mathbb{R}\)
\(\Rightarrow B=14-(x-3)^2\leq 14\)
Vậy GTLN của $B$ là $14$. Dấu "=" xảy ra khi \((x-3)^2=0\Leftrightarrow x=3\)
b)
\(A=x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow A=(x+1)^2+5\geq 0+5=5\)
Vậy GTNN của $A$ là $5$. Dấu "=" xảy ra khi \((x+1)^2=0\Leftrightarrow x=-1\)
\(\eqalign{ & a)B = - {x^2} + 6x + 5 \cr & B = 14 - \left( {{x^2} - 6x + 9} \right) \cr & B = 14 - {\left( {x - 3} \right)^2} \leqslant 14 \cr} \)
Vậy \(max_B=14\Leftrightarrow x=3\)
\(\eqalign{ & b)A = {x^2} + 2x + 6 \cr & A = \left( {{x^2} + 2x.1 + {1^2}} \right) + 5 \cr & A = {\left( {x + 1} \right)^2} + 5 \geqslant 5 \cr} \)
Vậy \(min_A=5\Leftrightarrow x=-1\)
Lời giải:
a) Ta có:
\(B=-x^2+6x+5=14-(x^2-6x+9)=14-(x-3)^2\)
Vì \((x-3)^2\ge 0, \forall x\in\mathbb{R}\)
\(\Rightarrow B=14-(x-3)^2\leq 14\)
Vậy GTLN của $B$ là $14$. Dấu "=" xảy ra khi \((x-3)^2=0\Leftrightarrow x=3\)
b)
\(A=x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\)
Vì \((x+1)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow A=(x+1)^2+5\geq 0+5=5\)
Vậy GTNN của $A$ là $5$. Dấu "=" xảy ra khi \((x+1)^2=0\Leftrightarrow x=-1\)