a. \(\left(2x+\dfrac{1}{3}\right)^4-1\)
Để \(\left(2x+\dfrac{1}{3}\right)^4-1\) có giá trị nhỏ nhất thì \(\left(2x+\dfrac{1}{3}\right)\) phải bằng 1
\(\Rightarrow\left(2x+\dfrac{1}{3}\right)^4=1\)
\(\Rightarrow\left(2x+\dfrac{1}{3}\right)^4=\left(\pm1\right)^4\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{1}{3}=1\\2x+\dfrac{1}{3}=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{2}{3}\\2x=\dfrac{-4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Vậy......