Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yoo Jae Suk

a) Tìm cặp số x, y thỏa mãn:

x2. (x + 3) + y2. (y + 5) - (x + y). (x2 - xy + y2) = 0

b) Tìm cặp số nguyên (x, y) thỏa mãn:

(2x - y). (4x2 + 2xy + y2) + (2x + y). (4x2 - 2xy + y2) -16x. (x2 - y) = 32

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$

Akai Haruma
31 tháng 7 2019 lúc 9:54

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$


Các câu hỏi tương tự
Yến Nhyy
Xem chi tiết
Nguyễn Huyền Trang
Xem chi tiết
Hạ Hạ
Xem chi tiết
Cheon Soo-Yeon
Xem chi tiết
Kwalla
Xem chi tiết
Tuyển Nguyễn Đình
Xem chi tiết
Leone Luis
Xem chi tiết
Alicia
Xem chi tiết