a)Đặt \(A=8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)
\(A< 8^9+8^9+8^9+8^9+8^9+8^9+8^9+8^9\)
\(A< 8\cdot8^9\)
\(A< 8^{10}< 9^{10}\)
\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)
a) \(8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)
(8+7+6+5+4+3+2+1)9
369
Vậy369>99
b)Ta có:\(36^{36}-9^{10}=\left(....6\right)-\left(9^2\right)^5=\left(....6\right)-81^5=\left(....6\right)-\left(....1\right)=\left(....5\right)⋮5\left(1\right)\)
Ta có:
\(36^{36}-9^{10}=\left(9\cdot4\right)^{36}-9^{10}=9^{36}\cdot4^{36}-9^{10}=9\left(9^{35}\cdot4^{36}-9^9\right)⋮9\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow36^{36}-9^{10}⋮\) 5 và 9
Mà ƯCLN(5;9)=1
\(\Rightarrow36^{36}-9^{10}⋮5\cdot9=45\left(đpcm\right)\)