a) \(P=\dfrac{x^2+2x+1}{x^2-1}\)
\(P=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b) \(\dfrac{8-x}{\left(x+2\right)\left(x-3\right)}+\dfrac{2}{x+2}\)
\(=\dfrac{8-x}{\left(x+2\right)\left(x-3\right)}+\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}=\dfrac{x+2}{\left(x+2\right)\left(x-3\right)}\)
\(=\dfrac{1}{x-3}\)
a)
P = \(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)= \(\dfrac{x+1}{x-1}\)
b)
\(\dfrac{8-x}{\left(x+2\right)\left(x-3\right)}\)+\(\dfrac{2}{x+2}\)
= \(\dfrac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}\)
= \(\dfrac{x+2}{\left(x+2\right)\left(x-3\right)}\) = \(\dfrac{1}{x-3}\)