Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Wang Soo Yi

Cho biểu thức \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

1. Rút gọn biểu thức A

2. Tìm giá trị nguyên cảu x để A nhận giá trị nguyên

Shinichi Kudo
6 tháng 4 2018 lúc 20:59

1. ĐKXĐ: \(x\ne0;x\ne2\)

Ta có: \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(4+x^2\right)\left(2-x\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(4+x^2\right)\left(x-2\right)}\right]\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(A=\dfrac{x\left(x-2\right)^2+2.2x^2}{2\left(x^2+4\right)\left(x-2\right)}.\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{x^2}\)

\(A=\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\dfrac{\left(x+1\right)\left(x-2\right)}{x^2}\)

\(A=\dfrac{\left(x^3+4x\right)\left(x+1\right)\left(x-2\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(A=\dfrac{x\left(x^2+4\right)\left(x+1\right)\left(x-2\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(A=\dfrac{x+1}{2x}\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
dam quoc phú
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Gallavich
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết