Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mai Anh

a) Chứng minh:\(A=x^{1970}+x^{1930}+x^{1980}\) chia hết cho \(B=x^{20}+x^{10}+1\) \(\forall x\in Z\).

b) Chứng minh: \(B=7.5^{2n}+12.6^n\left(n\in N\right)\) chia hết cho 19. GIÚP MK NHA MN ^^
Hung nguyen
4 tháng 12 2017 lúc 11:19

a/ Đặt \(x^{10}=a\) ta có:

\(A=a^{197}+a^{193}+a^{198}\)

\(=a^{193}\left(a^4+1+a^5\right)\)

\(=a^{193}\left[\left(a^5+a^4+a^3\right)-\left(a^3+a^2+a\right)+\left(a^2+a+1\right)\right]\)

\(=a^{193}\left(a^2+a+1\right)\left(a^3-a+1\right)⋮\left(a^2+a+1\right)\)

Vậy có ĐPCM

Hung nguyen
4 tháng 12 2017 lúc 11:22

b/ \(B=7.5^{2n}+12.6^n=\left(7.25^n-7.6^n\right)+19.6^n\)

\(=7\left(25-6\right)G\left(n\right)+19.6^n=7.19.G\left(n\right)+19.6^n⋮19\)


Các câu hỏi tương tự
Phạm Thị Yến Ngọc
Xem chi tiết
Phạm Lý
Xem chi tiết
nguyen giang
Xem chi tiết
Min
Xem chi tiết
vuminhhieu
Xem chi tiết
Phan Lê Thảo Vy
Xem chi tiết
Hòa An Nguyễn
Xem chi tiết
원회으Won Hoe Eu
Xem chi tiết
dương huyền trang
Xem chi tiết