\(a)9.x^2=25\)
\(\Leftrightarrow x^2=\dfrac{25}{9}\)
\(\Leftrightarrow x^2=\left(\pm\dfrac{5}{9}\right)^2\)
\(\Leftrightarrow x=\pm\dfrac{5}{9}\)
\(\Leftrightarrow x\in\left\{\dfrac{5}{9};-\dfrac{5}{9}\right\}\)
b, \(x^3-\dfrac{1}{4}x=0\)
⇔ \(x\left(x^2-\dfrac{1}{4}\right)=0\)
⇔ \(x\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\x+\dfrac{1}{2}\\x-\dfrac{1}{2}\end{matrix}\right.=0\) ⇔ \(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy xϵ \(\left\{0,\pm\dfrac{1}{2}\right\}\)
a, 9x2 = 25
⇔ x2 = \(\dfrac{25}{9}\)
⇔ x2 = \(\dfrac{5}{3}\)
⇔ x2 = \(\left(\dfrac{5}{3}\right)^2\)
⇔ x 2 = \(\pm\dfrac{5}{3}\)
Vậy x = \(\pm\dfrac{5}{3}\)
\(b)x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
\(c)9x^2-36=0\)
\(\Leftrightarrow9x^2=36\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=\left(\pm2\right)^2\)
\(\Leftrightarrow x=\pm2\)
\(\Leftrightarrow x\in\left\{2;-2\right\}\)
a, \(9x^2=25\Rightarrow9x^2=\left(\sqrt{25}\right)^2\)
\(\Rightarrow9x=\pm\sqrt{25}\Rightarrow9x=\pm5\)
\(\Rightarrow x=\pm\dfrac{5}{9}\)
b, \(x^3-\dfrac{1}{4}x=0\Rightarrow x^2\left(x-\dfrac{1}{4}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
c, \(9x^2-36=0\Rightarrow9x^2=36\)
\(\Rightarrow9x^2=6^2\Rightarrow9x=6\)
\(\Rightarrow x=\dfrac{2}{3}\)
c, \(9x^2-36=0\)
⇔ \(3\left(3x^2-12\right)=0\)
⇔ 3x2 -12=0
⇔ 3x2 = 12
⇔x2 = 4
⇔ x2 = \(\pm2\)
Vậy x = \(\pm2\)