Câu 1:Cho phương trình: 2x2 + 5x - 8 0a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.b) Không giải phương trình, hãy tính giá trị biểu thức: Adfrac{2}{x_1}+dfrac{2}{x_2}.Câu 2:Cho biểu thức Pdfrac{a+4sqrt{a}+4}{sqrt{a}+2}+dfrac{4-a}{2-sqrt{a}} (với a ≥ 0; a ≠ 4).a) Rút gọn biểu thức P.b) Tính sqrt{P} tại a thỏa mãn điều kiện a2 - 7a + 12 0.Câu 3:a) Giải hệ phương trình: left{{}begin{matrix}dfrac{x}{y}dfrac{3}{2}3x-2y5end{matrix}right.b) Xác định hệ số a và b của hàm số y ax + b...
Đọc tiếp
Câu 1:
Cho phương trình: 2x2 + 5x - 8 = 0
a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.
b) Không giải phương trình, hãy tính giá trị biểu thức: \(A=\dfrac{2}{x_1}+\dfrac{2}{x_2}.\)
Câu 2:
Cho biểu thức \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với a ≥ 0; a ≠ 4).
a) Rút gọn biểu thức P.
b) Tính \(\sqrt{P}\) tại a thỏa mãn điều kiện a2 - 7a + 12 = 0.
Câu 3:
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{3}{2}\\3x-2y=5\end{matrix}\right.\)
b) Xác định hệ số a và b của hàm số y = ax + b biết đồ thị của nó là đường thẳng (d) song song với đường thẳng y = x + 2 và chắn trên hai trục tọa độ một tam giác có diện tích bằng 2.
Câu 4:
Cho đường tròn (O; R), đường kính AD. B là điểm chính giữa của nửa đường tròn, C là điểm trên cung AD không chứa điểm B (C khác A và D) sao cho tam giác ABC nhọn.
a) Chứng minh tam giác ABD vuông cân.
b) Kẻ AM ⊥ BC, BN ⊥ AC. Chứng minh tứ giác ABMN nội tiếp. Xác định tâm I đường tròn ngoại tiếp tứ giác ABMN.
c) Chứng minh điểm O thuộc đường tròn (I).