Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Thị Hương Giang

2, Cho S= 5 +52+53+.......+596

a, CMR: S chia hết cho 126

b, Tìm chữ số tận cùng của S.

Giúp mk vs

Phương Trâm
14 tháng 8 2017 lúc 20:36

a) \(S=5+5^2+5^3+...+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)

\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{91}.\left(1+5^2+5^3+5^4+5^5\right)\)

\(S=5.3906+...+5^{91}.3906\)

\(S=3906.\left(5+...+5^{96}\right)\)

\(S=3.126.\left(5+...+5^{91}\right)\) chia hết cho \(6.\)

b) Do \(S\) là tổng các lũy thừa có cơ số là \(5\).

Cho nên mỗi lũy thừa đều tận cùng là \(5\).

\(S\) có tất cả \(96\) số

\(\Rightarrow\) Chữ số tận cùng của \(S\)\(0\).

 Mashiro Shiina
14 tháng 8 2017 lúc 22:53

\(S=5+5^2+5^3+..+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)\(S=1\left(5+5^2+5^3+5^4+5^6\right)5^6\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+5^{90}+\left(5+5^2+5^3+5^4+5^5+5^6\right)\)\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)\left(1+5^6+...+5^{90}\right)\)\(S=19530\left(1+5^6+...+5^{90}\right)\)

\(S=155.126.\left(1+5^6+...+5^{90}\right)\)

\(S⋮126\rightarrowđpcm\)

\(S=5+5^2+5^3+...+5^{96}\)

\(S=\overline{...5}+\overline{...5}+\overline{...5}+\overline{...5}+...+\overline{...5}+\overline{...5}\)\(S=\left(\overline{...5}+\overline{...5}\right)+\left(\overline{...5}+\overline{...5}\right)+...+\left(\overline{...5}+\overline{...5}\right)\)\(S=\overline{...0}+\overline{...0}+\overline{...0}\)

\(S=\overline{...0}\)


Các câu hỏi tương tự
Cathy Trang
Xem chi tiết
Nguyễn Viết Thắng
Xem chi tiết
TfBoyS_TDT
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Linh Dan Pham
Xem chi tiết
Đinh Hải Ngọc
Xem chi tiết
nguyen thi kim truc
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Lê Thị Quỳnh Phương
Xem chi tiết