Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
bài 1 xét tính đồn biến và nghịch biến của các hàm số
a) y= -\(\dfrac{1}{x+1}\) trên (-3;-2) và (2;3)
bài 2 xác định tính chẵn lẻ của hàm số
a) y= \(\dfrac{x^5}{\left|x\right|^3-1}\)
b) y= \(\left|x+2\right|\)-\(\left|x-2\right|\)
c) y= \(\sqrt{x+1}\)+\(\sqrt{1-x}\)
d) y=\(\dfrac{x^4+2x^2+1}{x}\)
e) y= \(x^2\)+x+1
f) y=\(\left(x+2\right)^2\)
Giả sử y=f(x) là hàm số xác định trên tập đối xứng D.CMR
a,Hàm số \(F\left(x\right)=\frac{1}{2}\left[f\left(x\right)+f\left(-x\right)\right]\) là hàm số chẵn xác định trên D
b,Hàm số y=f(x) có thể phân tích thành tổng của 1 hàm số chẵn và 1 hàm số lẻ
Xét tính chẵn lẻ của hàm số: \(f\left(x\right)=\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\left|x+2\right|-\left|x-2\right|}\)
xét tính chẵn lẻ của hàm số sau:
y = f(x) = \(\frac{3^4-x^2+5}{\left|x\right|^5-1}\)
xét tính chẵn lẻ của các hàm số
\(y=\sqrt{2-x}+\sqrt{2+x}\)
\(y=\sqrt{3+x}-\sqrt{3-x}\)
\(y=\sqrt{5+x}-\sqrt{3-x}\)
\(y=\sqrt{x^2-4x+4}+\left|x+2\right|\)
\(y=\sqrt{x^2+1}+\sqrt{x+1}+\sqrt{x-1}\)
\(y=\left|x+4\right|-\left|4-x\right|\)
Xét tính chẵn, lẻ của hàm số:
a) \(y=x^3+2x^2-1\)
b) \(y=\sqrt{x+1}\)
c) \(y=\left|x-2\right|\)
d) \(y=\frac{\left|x-2\right|+\left|x+2\right|}{\left|x\right|}\)
Cho hàm số \(y=f\left(x\right)=x^2+2\left(m-1\right)x+3m-5\) (m là tham số). Tìm m để giá trị nhỏ nhất của f(x) đạt giá trị lớn nhất
xét tính đồng biến nghịch biến của hàm số
a)\(y=f\left(x\right)=\sqrt{x^2+2x+3}\)
b) \(y=f\left(x\right)=x-\sqrt{1-x}\) với x<1