a/ \(f\left(-x\right)=-x^3+2x^2-1\) hàm ko chẵn ko lẻ
b/ TXĐ: \(x\ge-1\) không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ
c/ \(f\left(-x\right)=\left|-x-2\right|=\left|x+2\right|\) hàm vẫn ko chẵn ko lẻ
d/ TXĐ của hàm là đối xứng
\(f\left(-x\right)=\frac{\left|-x-2\right|+\left|-x+2\right|}{\left|-x\right|}=\frac{\left|x+2\right|+\left|x-2\right|}{\left|x\right|}=f\left(x\right)\)
Hàm chẵn
a/ f(−x)=−x3+2x2−1f(−x)=−x3+2x2−1 hàm ko chẵn ko lẻ
b/ TXĐ: x≥−1x≥−1 không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ
c/ f(−x)=|−x−2|=|x+2|f(−x)=|−x−2|=|x+2| hàm vẫn ko chẵn ko lẻ
d/ TXĐ của hàm là đối xứng
f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)
Hàm chẵn