ĐKXĐ: 1+x>=0 và 1-x>=0
=>x>=-1 và x<=1
=>-1<=x<=1
\(f\left(-x\right)=\dfrac{\sqrt{1-x}-\sqrt{1+x}}{\left|-x+2\right|-\left|-x-2\right|}=-f\left(x\right)\)
=>f(x) là hàm số lẻ
ĐKXĐ: 1+x>=0 và 1-x>=0
=>x>=-1 và x<=1
=>-1<=x<=1
\(f\left(-x\right)=\dfrac{\sqrt{1-x}-\sqrt{1+x}}{\left|-x+2\right|-\left|-x-2\right|}=-f\left(x\right)\)
=>f(x) là hàm số lẻ
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
bài 1 xét tính đồn biến và nghịch biến của các hàm số
a) y= -\(\dfrac{1}{x+1}\) trên (-3;-2) và (2;3)
bài 2 xác định tính chẵn lẻ của hàm số
a) y= \(\dfrac{x^5}{\left|x\right|^3-1}\)
b) y= \(\left|x+2\right|\)-\(\left|x-2\right|\)
c) y= \(\sqrt{x+1}\)+\(\sqrt{1-x}\)
d) y=\(\dfrac{x^4+2x^2+1}{x}\)
e) y= \(x^2\)+x+1
f) y=\(\left(x+2\right)^2\)
xét tính chẵn lẻ của các hàm số
\(y=\sqrt{2-x}+\sqrt{2+x}\)
\(y=\sqrt{3+x}-\sqrt{3-x}\)
\(y=\sqrt{5+x}-\sqrt{3-x}\)
\(y=\sqrt{x^2-4x+4}+\left|x+2\right|\)
\(y=\sqrt{x^2+1}+\sqrt{x+1}+\sqrt{x-1}\)
\(y=\left|x+4\right|-\left|4-x\right|\)
Tìm Tập xác định của các hàm số sau:
\(a.y=\dfrac{x-2}{\left|x\right|+4}+\sqrt{x-x^2}\\ b.y=\dfrac{\left|x\right|}{\left|x-3\right|+\left|x+3\right|}\\ c.y=\dfrac{x+1}{\left|x\right|-1}+\sqrt{x^2-\left|x\right|}\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
xét tính đồng biến nghịch biến của hàm số
a)\(y=f\left(x\right)=\sqrt{x^2+2x+3}\)
b) \(y=f\left(x\right)=x-\sqrt{1-x}\) với x<1
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
1) Tìm tập xác định của các hàm số:
a. y = \(\frac{\sqrt{4-x}+\sqrt{x+3}}{\left(|x|-1\right)\sqrt{x^2-2x+1}}\)
b. y = \(\frac{\sqrt{x^2-6x+9}+\sqrt{\left|x\right|-2}}{\left(x^4-4x^2+3\right)\left(\sqrt{x}-2\right)}\)
2) Xét tính chẵn, lẻ:
y = \(\frac{x^4-6x^2+2}{\left|x\right|-1}\)