1) \(A=x^3+y^3+3xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(A=x^2-xy+y^2+3xy\)
\(A=x^2+2xy+y^2=\left(x+y\right)^2=1\)
Vậy A = 1.
2) \(B=x^3-y^3-3xy\)
\(B=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(B=x^2+xy+y^2-3xy\)
\(B=x^2-2xy+y^2\)
\(B=\left(x-y\right)^2=1^2=1\)
Vậy B = 1.