\(\dfrac{1}{7}+\dfrac{1}{91}+...+\dfrac{1}{1147}\)
\(=\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+\dfrac{1}{13\cdot19}+...+\dfrac{1}{31\cdot37}\)
\(=\dfrac{1}{6}\cdot\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+\dfrac{6}{13\cdot19}+...+\dfrac{6}{31\cdot37}\right)\)
\(=\dfrac{1}{6}\cdot\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{31}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}\cdot\left(1-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{36}{37}\)
\(=\dfrac{6}{37}\)
Vậy ...
#\(Toru\)