1.
a) Lấy $x_1\neq x_2\in (0;+\infty)$
Ta có:
\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\frac{1}{\sqrt{x_1}+\sqrt{x_2}}>0\)
\(\Rightarrow \) hàm số đồng biến trên $(0;+\infty)$
b) Lấy $x_1\neq x)2\in [1+\infty)$
Ta có:
\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1-1}-\sqrt{x_2-1}}{x_1-x_2}=\frac{1}{\sqrt{x_1-1}+\sqrt{x_2-1}}>0\)
Do đó hàm số đồng biến tập xác định $[1;+\infty)$
Lời giải:
a) Lấy $x_1,x_2\in\mathbb{R}; x_1\neq x_2$
Để $y=mx^3$ đồng biến thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow \frac{m(x_1^3-x_2)^3}{x_1-x_2}>0$
$\Leftrightarrow m(x_1^2+x_1x_2+x_2^2)>0$
$\Leftrightarrow m>0$ (do $x_1^2+x_1x_2+x_2^2=(x_1+\frac{x_2}{2})^2+\frac{3}{4}x_2^2>0$ với mọi $x_1\neq x_2$
b)
Điều kiện: $m\leq 2$
Ta thấy, với $x_1\neq x_2\in (2;+\infty)$:
\(\frac{y(x_1)-y(x_2)}{x_1-x_2}=\frac{\sqrt{x_1-m}-\sqrt{x_2-m}}{x_1-x_2}=\frac{1}{\sqrt{x_1-m}+\sqrt{x_2-m}}>0\) với mọi $x\in (2;+\infty); m\leq 2$
Do đó hàm số đồng biến khi $m\leq 2$
c)
Lấy $x_1,x_2\in (0;+\infty)$. Để hàm số đồng biến trên $(0;+\infty)$ thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow (\frac{m}{x_1^2}-\frac{m}{x_2^2}).\frac{1}{x_1-x_2}>0$
$\Leftrightarrow \frac{-m(x_2+x_1)}{x_1^2x_2^2}>0$
$\Leftrightarrow -m>0$ (do $\frac{x_2+x_1}{x_1^2x_2^2}>0$ với mọi $x_1,x_2>0$
$\Leftrightarrow m< 0$