y' là đạo hàm bậc nhất của y. Bạn đọc sách toán phổ thông phần đạo hàm/ tìm max min của hàm số hoặc google search để tìm hiểu rõ hơn.
y' là đạo hàm bậc nhất của y. Bạn đọc sách toán phổ thông phần đạo hàm/ tìm max min của hàm số hoặc google search để tìm hiểu rõ hơn.
Cho hàm số \(y=x^2+2mx-3m\) và hàm số \(y=-2x+3\). Tìm m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt A và B sao cho AB = \(4\sqrt{5}\)
Với giá trị nào của m thì hàm số đồng biến? nghịch biến?
a, y = (2m+3)x-m+1
b, y = (2m+5)x+m+3
c, y = mx-3-x
d, y = m(x+2)
Dùng định nghĩa xét tính đơn điệu của hàm số y=\(\dfrac{m+1}{x}\) đồng biến trên từng khoảng xác định.
cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]
Biết hàm số \(y=ax^2+2x+b\) có giá trị lớn nhất là 4 , đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;+\infty\right)\) . Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng:
A. 3. B. . C. 1 . D. .
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Tìm tất cả các giá trị m để hàm số y= -x^2+2|m-1|x-3 nghịch biến trên (2;+\(\infty\))