3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
Cho a,b,c là số dương. CMR:
1. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
2. \(a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\le a^3+b^3+c^3\)
3. \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)
2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:
\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)
4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.
Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)
5) Chứng minh rằng:
\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)
6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)
Tìm GTLN của b sao cho bđt sau đúng:
\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)
7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)
8) Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)
Cho a,b,c>0.Chứng minh rằng:\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{a+c}\le\dfrac{3.\left(a^2+b^2+c^2\right)}{a+b+c}\)
3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có:
\(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\)
\(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\)
Nhân vế theo vế rồi khai phương ta được đpcm.
b) \(\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{4\sqrt{ab}}{a+b}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{7\sqrt{ab}}{a+b}\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2}{2ab}.\dfrac{4\sqrt{ab}}{a+b}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{7}{2}=3.2-\dfrac{7}{2}=\dfrac{5}{2}\)
Lưu ý: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\dfrac{\sqrt{ab}}{a+b}\le\dfrac{1}{2}\)
1.2) \(a^3-3a^2+8a=9\Leftrightarrow\left(a-1\right)^3+5a-8=0\)
\(b^3-6b^2+17b=15\Leftrightarrow\left(b-2\right)^3+5b-7=0\)
Cộng vế theo vế, áp dụng HĐT cho 2 cái mũ 3 rồi suy ra được a+b=3
1.1 Phương trình tương đương \(x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)
Chia cả 2 vế cho x, chuyển vế, rút gọn, ta được
\(\left(x-\dfrac{1}{x}\right)+\sqrt{x-\dfrac{1}{x}}-2=0\)
Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\) thì ta có:
\(t^2+t-2=0\Rightarrow\)Chọn t=1 vì \(t\ge0\)
\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\) giải ra kết luận được 2 nghiệm \(x_1=\dfrac{1+\sqrt{5}}{2};x_2=\dfrac{1-\sqrt{5}}{2}\)
Bài 2: Bó tay nha con ngoan^^
Mấy CTV đừng xóa, để người cần đọc đã ;V
Chứng minh :
a, \(\dfrac{a+b+c}{3}\dfrac{>}{ }\sqrt{\dfrac{ab+bc+ca}{3}}\) với a,b,c>0
b,\(\dfrac{a^2+b^2+c^2}{3}\dfrac{>}{ }\left(\dfrac{a+b+c}{3}\right)^2\)
c,\(\dfrac{x^2+2}{\sqrt{x^2+1}}\dfrac{>}{ }2\)
d,\(\dfrac{a^3+b^3}{2}\dfrac{>}{ }\left(\dfrac{a+b}{2}\right)^3\)
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Cho a,b,c > 0 và ab + bc + ac = 1. Chứng minh rằng :\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
cho a,b,c >0. chứng minh
\(\dfrac{a}{\sqrt[3]{4̣̣\left(b^3+c^3\right)}}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)