Bài 1:
Ta có: 3a=2b
⇒\(\frac{a}{2}=\frac{b}{3}\)
Ta có: 5b=7c
⇒\(\frac{b}{7}=\frac{c}{5}\)
Ta có: \(\frac{a}{2}=\frac{b}{3}\)
⇒\(\frac{a}{14}=\frac{b}{21}\)(1)
Ta có: \(\frac{b}{7}=\frac{c}{5}\)
⇒\(\frac{b}{21}=\frac{c}{15}\)(2)
Từ (1) và (2) suy ra
\(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}\) và 3a+5b-7c=60
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}=\frac{3a+5b-7c}{3\cdot14+5\cdot21-7\cdot15}=\frac{60}{42}=\frac{10}{7}\)
Do đó, ta có
\(\frac{a}{14}=\frac{10}{7}\Leftrightarrow a=\frac{10\cdot14}{7}=20\)
\(\frac{b}{21}=\frac{10}{7}\Leftrightarrow b=\frac{10\cdot21}{7}=30\)
\(\frac{c}{15}=\frac{10}{7}\Leftrightarrow c=\frac{10\cdot15}{7}=\frac{150}{7}\)
Vậy: a=20; b=30; \(c=\frac{150}{7}\)
Bài 2:
*Nếu \(a< \frac{3}{2}\) thì |2x-3|=3-2x; |2-x|=2-x
Ta có: 3-2x-x = 2-x
⇔3-3x=2-x
⇔3-3x-2+x=0
⇔1-2x=0
⇔2x=1
⇔\(x=\frac{1}{2}\)
*Nếu \(\frac{3}{2}\le x\le2\) thì
|2x-3|=2x-3; |2-x|=2-x
Ta có: 2x-3-x=2-x
⇔x-3=2-x
⇔x-3-2+x=0
⇔2x-5=0
⇔2x=5
⇔\(x=\frac{5}{2}\)
Vì \(\frac{5}{2}>\frac{3}{2}\)nên không thỏa mãn điều kiện
*Nếu 2<x thì |2x-3|=2x-3; |2-x|=x-2
Ta có: 2x-3-x=x-2
⇔x-3=x-2(loại vì vô lý)
Vậy: \(x=\frac{1}{2}\)