1) Thực hiện phép tính
a) ( y-1)(y^2+y+1)+(1/3x^2y - y)(2x+y^2)
b) 2x(3x^2 - 5x + 7)
c) (x^2 +3x-1)(2x-1)
2) Tìm số dư trong phép chia đa thức
(4y^4 - 3y^2 - 2y+5) : (y^2 - 1)
3) Tìm x biết
a) x^2 - 9 = 0
b) (x^2+1)(x-3)(x+2)=0
4) Phân tích đa thức thành nhân tử
a) x^2 - y^2 +2y-1
b) 5x^2 - 10xy - 20z^2 + 5y^2
c) 3x^2 - 8x +2
5) Tìm x thỏa mãn
x^3 = x
2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.
3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.
4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )
5) \(x^3=x\Leftrightarrow x=\pm1\)