Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
=>\(cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\)