tìm 2 số nguyên biết tổng ,hiệu (số lớn trừ số bé) ,thương(số lớn chia số bé) của 2 số đó cộng lại bằng 38
1. Cho các số tự nhiên a và b sao cho (a + 2b) chia hết cho 5 và (a + b) chia hết cho 3. Biết rằng 2a + b \(\ge\) 99. Tìm giá trị nhỏ nhất của T = 7a + 5b.
2. Cho dãy gồm 6 số nguyên tố phân biệt và tăng dần. Hiệu giữa hai số liên tiếp của dãy đã cho đều bằng nhau. Chứng minh rằng hiệu giữa số lớn nhất và số bé nhất không nhỏ hơn 150.
Chứng minh rằng:nếu \(\frac{x+2}{x-2}=\frac{y+3}{y-3}\)thì\(\frac{x}{2}=\frac{y}{3}\)
Cho a, b, c, d là các số hữu tỉ dương và \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng: (a+2c).(b+d)=(a+c).(b+2d)
Cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng
a. \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)
1. Tìm x,y sao cho x(x+y)=36 và y(x+y)=64
2. Cho 3(a+b)=5(b+c)=4a+3c. Chứng minh rằng a=3(b-c)
3. Tìm số tự nhien có 3 chữ số biết số đó là bội của 7 và nếu sắp xếp các chữ số của số đó theo thứ tự tăng dần thì tỉ lệ với 1:2:3
4. Cho a,b,c khác 0 và 2a+b+c/a = a+2b+c/b= a+b+2c/c . Tính A= b+a/c + b+c/a + c+a/b
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có các tỉ lệ thức sau( giả thiết rằng các tỉ lệ thức phải chứng minh đều có nghĩa)
a) \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c) \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
A) Phần Số thập phân hữu hạn-Số thập phân vô hạn tuần hoàn
1. Chứng tỏ rằng:
a) 0,(37)+0,(62)=1
b)0(33).3=1
c)0,(123).3+0,(630)=1
2.Tìm các số hữu tỉ a và b biết rằng hiệu a-b bằng thương a:b và bằng hai lần tổng a+b
B) Phần Số vô tỉ-khái niệm về căn bậc hai
1.Cho \(A=\dfrac{\sqrt{x+1}}{\sqrt{x-1}}\) .Chứng minh rằng với \(x=\dfrac{16}{9}\) thì A có giá trị nguyên.
2.Tìm x biết:
a) \(x-2\sqrt{x}=0\)
b) \(x=\sqrt{x}\)
Chứng minh rằng nếu các số a,b,c,d thỏa mãn đẳng thức
\(\left[ab\left(ab-2cd\right)+c^2d^2\right]\)\(\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]\)=0 thì chúng lập thành một tỉ lệ thức
Cho 6 số nguyên dương a< b<c<d<m<n. Chứng minh rằng \(\dfrac{a+c+m+1}{a+b+c+d+m+n}\) < \(\dfrac{1}{2}\)