cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). chứng minh rằng ta có các tỉ lệ thức sau( giả thiết rằng các tỉ lệ thức phải chứng minh đều có nghĩa)
a) \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c) \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho ba số a, b, c thỏa mãn: b ≠ c và a + b ≠ c và c2 = 2(ac + bc - ab)
Chứng minh rằng: \(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
Tính giá trị biểu thức
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-c\right)}{abxy\left(xy+ay+ab+bx\right)}\) với \(a=-2;x=\dfrac{1}{3};b=\dfrac{2}{3};y=-1\)
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Cho tỉ lệ thức: a. \(\frac{2015a-2016b}{2016c+2017d}=\frac{2015c-2016d}{2016a+2017b}\)
b. \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
c. \(\frac{ab}{cd}=\left(\frac{2a+3b}{2c+3d}\right)^2\)
Chứng minh nếu: \(\left|a\right|\) < 1, \(\left|b-1\right|\) < 10, \(\left|a-c\right|\) < 10 thì \(\left|ab-c\right|\) < 20
Giúp mình nha mọi người!!! Cảm ơn mọi người nhiều!!!
Cho tỉ lệ thức \(\dfrac{a}{b}\)\(=\)\(\dfrac{c}{d}\). Chứng tỏ ta có tỉ lệ thức \(\dfrac{ac}{bd}\)\(=\)\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
7. Cho \(\left|a\right|< 1\), \(\left|a-c\right|< 1999\), \(\left|b-1\right|< 1999\).
CMR: \(\left|ab-c\right|< 3998\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng:
a, \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b, \(\dfrac{\left(a-b\right)^4}{\left(c-d\right)^4}=\dfrac{a^4+b^4}{c^4+d^4}\)