Từ (1); (2) và (3) ta được:
\(ax+by+by+cz+cz+ax=5a+5b+5c\)
\(\Leftrightarrow2\left(ax+by+cz\right)=5\left(a+b+c\right)\)
\(\Rightarrow a+b+c=\dfrac{2\left(ax+by+cz\right)}{5}\)
Ta có:
\(ax+by=5a\)
\(\Leftrightarrow ax+by+cz=5c+cz\)
\(\Leftrightarrow ax+by+cz=c\left(z+5\right)\)
\(\Rightarrow\dfrac{1}{z+5}=\dfrac{c}{ax+by+cz}\) (3)
Tượng tự ta có:
\(\dfrac{1}{x+5}=\dfrac{a}{ax+by+cz}\) (4)
\(\dfrac{1}{y+5}=\dfrac{b}{ax+by+cz}\)(5)
Từ (3);(4)và (5) \(\Rightarrow\dfrac{1}{x+5}+\dfrac{1}{y+5}+\dfrac{1}{z+5}=\dfrac{a+b+c}{ax+by+cz}\)
\(=\dfrac{\dfrac{2\left(ax+by+cz\right)}{5}}{ax+by+cz}=\dfrac{2}{5}\)
Vậy:....
\(x^2-9x+1=0\Rightarrow x=9x-1\)
Ta có:
\(V=\dfrac{x^4+x^2+1}{5x^2}\)
\(=\dfrac{\left(x^2\right)^2+x^2+1}{5x^2}\)
\(=\dfrac{\left(9x-1\right)^2+9x-1+1}{5\left(9x-1\right)}=\dfrac{81x^2-18x+1+9x-1+1}{5\left(9x-1\right)}=\dfrac{81\left(9x-1\right)-9x+1}{5\left(9x-1\right)}=\dfrac{729x-81-9x+1}{5\left(9x-1\right)}\)\(=\dfrac{720x-80}{5\left(9x-1\right)}=\dfrac{80\left(9x-1\right)}{5\left(9x-1\right)}=16\)