Áp dụng bất đẳng thức AM-GM cho các số dương:
\(a+1=a+a+b+c\ge4.^4\sqrt{\left(a^2.b.c\right)}\)
\(b+1=b+a+b+c\ge4.^4\sqrt{\left(a.b^2.c\right)}\)
\(c+1=c+a+b+c\ge4.^4\sqrt{a.b.c^2}\)
Nhân vế theo vếu
\(\left(a+a+b+c\right)\left(b+a+b+c\right)\left(c+a+b+c\right)\ge64^4\sqrt{\left(abc\right)^4}\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge64abc\)(a+b+c =1)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
Vậy giá trị MinP là 64