Qua O kẻ tia Ox sao cho Ox song song và cùng chiều tia AB
Trên Ox lấy M sao cho OM=3AB
Trên tia đối của tia Ox lấy N sao cho ON=4AN
M; N là 2 điểm cần tìm
Qua O kẻ tia Ox sao cho Ox song song và cùng chiều tia AB
Trên Ox lấy M sao cho OM=3AB
Trên tia đối của tia Ox lấy N sao cho ON=4AN
M; N là 2 điểm cần tìm
cho tam giác ABC gọi M , N , P lần lượt là trung điểm của BC , CA , AB . CMR với mọi điểm O ta có :
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
cho ba điểm O,M,N và số thực k. lấy các điểm M' và N' sao cho\(\overrightarrow{OM'}\)=k\(\overrightarrow{OM}\),k \(\overrightarrow{ON}\)=\(\overrightarrow{ON'}\)
chứng minh rằng \(\overrightarrow{M'N'}\)=k\(\overrightarrow{MN}\)
1/Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(3\overrightarrow{NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính MN theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng
Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(\overrightarrow{3NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng
1/ Cho tam giác ABC và trung tuyến CM tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bên AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}\). Hãy biểu diễn \(\overrightarrow{MN},\overrightarrow{AM},\overrightarrow{CN}\) theo \(\overrightarrow{u}\) và \(\overrightarrow{v}\)
Cho đoạn thẳng AB. Mlà điểm xác định bởi \(\overrightarrow{MA}=k\overrightarrow{MB}\) (k≠1). CMR ∀O ta có:
\(\overrightarrow{OM}=\frac{\overrightarrow{OA}-k\overrightarrow{OB}}{1-k}\)
cho tam giác ABC nội tiếp đường tâm O . Gọi H là trục tâm A' B' là điểm đối xứng của A , B qua O . Chứng minh rằng
a , \(\overrightarrow{AH}=\overrightarrow{B'C}\)
b , \(\overrightarrow{HM}=\overrightarrow{MA}\)
c , \(\overrightarrow{AB}=\overrightarrow{BA}\)
d , \(\overrightarrow{OM}=\frac{1}{2}\overrightarrow{B'C}\)
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b