Cho bình hành ABCD. Gọi MN là trung điểm của BC và AD. O là giao điểm của AC và BD. CMR:\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
cho tam giác ABC bất kì , gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA . H,H' lần lượt là trực tâm của tam giác ABC,MNP. K đối xứng với H qua H' .Khẳng định nào sau đây đúng?
A.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}\)
B.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HK}\)
C.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{0}\)
D.\(\overrightarrow{HM}+\overrightarrow{HN}+\overrightarrow{HP}=\overrightarrow{H'K}\)
1. Gọi I, J lần lượt là trung điểm của 2 đoạn thẳng AB và CD. Chứng minh rằng: \(2\overrightarrow{IJ}\) =\(\overrightarrow{AC}\) + \(\overrightarrow{BD}\) = \(\overrightarrow{AD}\) + \(\overrightarrow{BC}\)
2. Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: \(\overrightarrow{AM}\) + \(\overrightarrow{BN}\) + \(\overrightarrow{CD}\) = \(\overrightarrow{O}\)
Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Mệnh đề nào dưới đây là đúng:
A. \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AB}\)
B. \(\overrightarrow{AC}=\overrightarrow{BD}\)
C. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=\overrightarrow{O}\)
D. \(\overrightarrow{OA}=\overrightarrow{OB}=\overrightarrow{OC}=\overrightarrow{OD}\)
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
Cho tam giác ABC bất kì, gọi M,N,P lần lượt là trung điểm các cạnh AB,BC,CA. H,H' lần lượt là trực tâm các tam giác ABC,MNP; K đối xứng với H qua H'. Khẳng định nào đúng?
A. \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HH'}\)
B.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{HK}\)
C.\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{0}\)
(Kèm lời giải)
Cho hình thang OABC . M,N lần lượt là trung điểm của OB và OC . Chứng minh rằng:
a. \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
b. \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{OC}-\overrightarrow{OB}\)
c. \(\overrightarrow{MN}=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OB}\right)\)
Cho tam giác ABC có trọng tâm G. D,E,F lần lượt là trung điểm của BC,CA,AB. Gọi I là giao của AD,EF.
Đặt \(\overrightarrow{u}=\overrightarrow{AE},\overrightarrow{v}=\overrightarrow{AF}\)
Hãy biểu diễn \(\overrightarrow{AI},\overrightarrow{AG},\overrightarrow{DE},\overrightarrow{DC}\) theo \(\overrightarrow{u},\overrightarrow{v}\)