a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+15^2=289\)
hay BC=17(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot17=8\cdot15=120\)
hay \(AH=\dfrac{120}{17}cm\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=8^2-\left(\dfrac{120}{17}\right)^2=\dfrac{4096}{289}\)
hay \(BH=\dfrac{64}{17}cm\)
Vậy: BC=17cm; \(AH=\dfrac{120}{17}cm\); \(BH=\dfrac{64}{17}cm\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB, N∈AC)
\(\widehat{ANH}=90^0\)(HN⊥AC)
\(\widehat{AMH}=90^0\)(HM⊥AB)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇔AH=MN(Hai đường chéo của hình chữ nhật AMHN)
mà \(AH=\dfrac{120}{17}cm\)(cmt)
nên \(MN=\dfrac{120}{17}cm\)
Vậy: \(MN=\dfrac{120}{17}cm\)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)