Cho hình thang ABCD có Ab song song CD và AB nhỏ hơn CD. Gọi M, N lần lượt là trung điểm của 2 đáy AB và CD thỏa mãn MN=\(\dfrac{CD-AB}{2}\)
Chứng tỏ \(\widehat{BCD}+\widehat{ADC}=90^0\)
Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho hình thang ABCD ( AB//CD, AB<CD).Qua M là trung điểm BC, kẻ đường thẳng // AD cắt CD ở E,cắt AB ở F
a) C/m AFED là hbh
b) C/m BFCE là hbh
c) C/m diện tích tam giác ADE= dtich tam giác BEC= 1/2 diện tích ABCD
Cho tam giác ABD vuông tại A có AB <AD . M là trung điểm của BD . GọiC là điểm đối xứng với A qua M
a, CM tứ giác ABCD là hình chữ nhật
b, Trên tia đối của tia DA lấy E sao cho DE=DA. Gọi I là trung điểm của CD CM: IB=IE
c, gọi AH là đường cao của tam giác ABD và K là điểm đối xứng với A qua H. CM: tứ giác BDCK là hình thang cân
d , chứng minh rằng k,C,E thẳng hàng
1. Cho tam giác ABC có diện tích bằng 24cm2, đường cao AH bằng 6 cm. Tính BC
2. Cho tam giác ABC vuông cân tại A (AD là phân giác CD thuộc BC), E là điểm đối xứng với D qua AC. Tứ giác AECD là hình gì?
3. Cho tam giác nhọn ABC, các đường cao BH và CK. Gọi E và F lần lượt là hình chiếu của B và C trên HK. Chứng minh rằng EK = HF
Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, đcao AH, pgiac BD cắt AH tại I a) Cm tam giác ABH đồng dạng tam giác CBA b) Tính AD, DC c) Cm: AB.BI = BD.HB d) Tính diện tích tam giác BHI (làm mỗi phần d thôi nha ạ)
cho hình thang abcd có ab=5cm cd=15cm ac=16 bd=12cm từ a vẽ đường thằng song song vs bd cắt cd tại e A,chứng minh rằng tam giác ace là tam giác vuông B, tính diện tích của tứ giác abcd