Bài 2:Cho tam giác ABC, đường thẳng song song với BC cắt các cạnh AB và AC lần lượt tại D và E.Vẽ đường thẳng a qua A và song song với BC, đường thẳng a cắt các đường thẳng BE và CD lần lượt tại G và K. Chứng minh A là trung điểm của KG.
Bài 3: Cho hình thang ABCD (AB//CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF//AB.
b) Đường thẳng EF cắt AD và BC lần lượt tại P và N. Chứng minh PE =EF= FN.
c) Biết AB=7,5 cm; CD=12 cm.Tính PN.
Cho hình thang ABCD có AB//CD , \(\widehat{A}=\widehat{D}=90^o\). M là trung điểm AD và \(\widehat{BMC}=90^0\). Cho biết AD =2a.C/M:
a) AB . CD = a2(mình làm rồi nha)
b) Tam giác MAB đồng dạng tam giác CMB
c) BM là tia phân giác \(\widehat{ABC}\)
Hình Thang ABCD (AB // CD). EF // 2 đáy hình thang ABCD (E thuộc AD, F thuộc BC) sao cho \(S_{ABFE}=S_{EFCD}\)
CMR: \(EF=\sqrt{\dfrac{AB^2+CD^2}{2}}\)
Bài 1: Cho hình thang ABCD có AB//CD và AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N. Chứng minh rằng OM= ON
cho hình thang abcd có ab=5cm cd=15cm ac=16 bd=12cm từ a vẽ đường thằng song song vs bd cắt cd tại e A,chứng minh rằng tam giác ace là tam giác vuông B, tính diện tích của tứ giác abcd
Cho hình thang ABCD, E, F, G, H lần lượt là trung điểm của AB, BC, CD, AD. Chứng minh rằng \(S_{EFGH}=\dfrac{1}{2}S_{ABCD}\).
Bài 1: Cho hình thang ABCD có AB//CD và AB là đáy nhỏ, gọi O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N. Chứng minh rằng OM= ON
Cho hình thang ABCD ( AB//CD, AB<CD).Qua M là trung điểm BC, kẻ đường thẳng // AD cắt CD ở E,cắt AB ở F
a) C/m AFED là hbh
b) C/m BFCE là hbh
c) C/m diện tích tam giác ADE= dtich tam giác BEC= 1/2 diện tích ABCD