\(\left\{{}\begin{matrix}x+y=2k-1\\\left(x+y\right)^2-2xy=2k^2+4k-11\end{matrix}\right.\)
\(\Rightarrow2xy=\left(2k-1\right)^2-\left(2k^2+4k-11\right)=2k^2-8k+12\)
\(\Rightarrow xy=k^2-4k+6=\left(k-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(k=2\)
\(\left\{{}\begin{matrix}x+y=2k-1\\\left(x+y\right)^2-2xy=2k^2+4k-11\end{matrix}\right.\)
\(\Rightarrow2xy=\left(2k-1\right)^2-\left(2k^2+4k-11\right)=2k^2-8k+12\)
\(\Rightarrow xy=k^2-4k+6=\left(k-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(k=2\)
Cho x,y và k là các số thỏa mãn điều kiện \(\left\{{}\begin{matrix}x+y=2k-1\\x^2+y^2=2k^2+4k-11\end{matrix}\right.\)
Xác định k để tích xy có giá trị nhỏ nhất
Cho các số thực a;b;c;x;y;z thỏa mãn: \(\left\{{}\begin{matrix}az-2by+cx=0\\ac-b^2>0\end{matrix}\right.\)
CMR: \(y^2\ge xz\)
mk có cái cách này k bt có k mk nghị cm bằng phản chứng.
Cho x, y, z dương thỏa mãn \(\left\{{}\begin{matrix}x^2+xy+y^2=1\\y^2+yz+z^2=\dfrac{1}{4}\\x^2+xz+z^2=\dfrac{3}{4}\end{matrix}\right.\)
Tính B=x+y+z
Cho các số thực x,y,z thỏa mãn ĐK \(\left\{{}\begin{matrix}x\ge2;y\ge9;z\ge1951\\x+y+z=2016\end{matrix}\right.\)
Tìm GTLN của xyz
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
Giải Hệ: \(\left\{{}\begin{matrix}\left(x+y\right)^2=2\\xy=1\end{matrix}\right.\)
Cho số thực x,y,z thỏa mãn \(\left\{{}\begin{matrix}xy+x+y=3\\yz+y+z=8\\zx+z+x=15\end{matrix}\right.\) . Tính x +y +z
1. Cho \(\left\{{}\begin{matrix}x,y\ge0\\x+y\le12\end{matrix}\right.\). Tìm Min, Max \(P=xy^2\left(8-x-y\right)\)