HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}=\sqrt{ab}\). Áp dụng tìm GTNN của B=\(\dfrac{x+1}{x}\) với:
TH1: x>0
TH2: \(0< x\le\dfrac{1}{4}\)
TH3: \(x\ge2\)
Dùng 1 mặt phẳng nghiêng để đưa 1 vật có khối lượng 1,5 tạ lên cao 3m bằng 1 lực kéo 525N. Biết chiều dài của mặt phẳng nghiêng là 9m
a) Tính hiệu suất của mặt phẳng nghiêng
b) Tính lực cản tác dụng lên vật trong trường hợp đó
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Chứng minh các bất đẳng thức sau: \(\dfrac{x^2+1}{x}\ge2\left(x\ne0\right)\)