HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho: \(B=x^2+y^2+z^2\). Tìm GTNN của: \(B=x^2+y^2+z^2\) biết x+y+z=2019
Cho x,y,z,t dương và x+y+z+t=1. Tìm GTNN của biểu thức: \(B=\dfrac{\left(x+y+z\right).\left(x+y\right)}{xyzt}\)
Cho x, y, z là các số dương có tổng bằng 1. Tìm GTNN của biểu thức: \(A=\dfrac{x+y}{xyz}\)
Chứng minh 2 số dương có tích không đổi thì tổng nhỏ nhất khi 2 số đó bằng nhau
Cho \(B=x^2+y^2+z^2\). Tìm GTNN của biểu thức: \(B=x^2+y^2+z^2\) biết x+y+z=2019
Cho: \(B=x^2+y^2+z^2\). Tìm GTNN của biểu thức: \(B=x^2+y^2+z^2\)
Cho a+b+c=3 và a, b, c>0. Tìm GTNN của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)