Bài 3. Cho tam giác cân ABC có AB = AC. Trên tia đối của các tia BA và CA lấy hai
điểm D và E sao cho BD = CE.
a) Chứng minh DE // BC;
b) Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC.
Chứng minh DM = EN.
c) Chứng minh tam giác AMN là tam giác cân;
d) Từ B và C kẻ các đường vuông góc với AM và AN chúng cắt nhau tại I.
Chứng minh AI là tia phân giác chung của hai góc BAC và góc MAN.
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho
BD = BC
a) Chứng minh rằng BAC ̂ = BAD ̂
b) Tính độ dài CD biết AB = 4cm, AC = 5 cm
c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD).
∆HBE là tam giác gì? Tại sao?
d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K∈ BC).
a) Chứng minh rằng KB = KC và BAK ̂ =CAK ̂
b) Tính độ dài AK
c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC).
Chứng minh rằng ∆KDE là tam giác cân.
d) Chứng minh rằng DE//BC
e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng
MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho
BD = BC
a) Chứng minh rằng BAC ̂ = BAD ̂
b) Tính độ dài CD biết AB = 4cm, AC = 5 cm
c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD).
∆HBE là tam giác gì? Tại sao?
d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Bài 4: Tính hợp lý
a) \(A=\left(\left|\frac{-3}{4}\right|+\left|\frac{-2}{5}\right|\right):\frac{3}{7}+\left(\frac{-3}{5}+\left|\frac{-1}{4}\right|\right):\frac{3}{7}\)
b) \(B=2\frac{5}{23}-\left(\frac{-7}{9}\right)-\left|\frac{-5}{23}\right|+\frac{12}{9}+\left|-0,75\right|\)
Bài 5 : Tìm x :
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\left|\frac{-2}{3}\right|\)
b) \(\left|x\right|:\left(\frac{1}{9}-\frac{2}{5}\right)=\frac{-1}{2}\)
c) \(\left(x-\frac{1}{5}\right).\left(1\frac{3}{5}+2x\right)=0\)
Bài 4: Cho ∆ABC vuông tại A, CK là tia phân giác của góc ACB ( K AB). Trên tia
BC lấy điểm sao cho CN = AC.
a) Chứng minh ∆ACK = ∆NCK
b) Chứng minh CK là đường trung trực của AN
c) Vẽ AD ┴ BC tại D và cắt CK tại H. Chứng minh AN là tia phân giác của góc DAB
d) * Qua H vẽ đường thẳng vuông góc với AD và cắt AC tại E, trên tia đối tia
DA lấy điểm F sao cho AH = DF. Chứng minh EF ┴ FB
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và góc NMD = góc PMD
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH = BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy
điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD.
a) Chứng minh rằng ∆AEB = ∆ADC
b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân
c) Chứng minh rằng AD//HF
d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi
I là giao điểm của BM và CN. Chứng minh AI là phân giác của BAC ̂
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K
∈ BC).
a) Chứng minh rằng KB = KC và BAK ̂ =CAK ̂
b) Tính độ dài AK
c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC).
Chứng minh rằng ∆KDE là tam giác cân.
d) Chứng minh rằng DE//BC
e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng
MC vuông góc với BC
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử góc BAC = 74độ. Tính góc ABC
d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC