Bài 2 :
a, Xét tử số : Đặt B = \(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}\)
Số số hạng của tử số là : ( 99 - 1 ) : 2 + 1 = 50 ( số )
=> Tử số có 50 phân số
Ta có : \(B=\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+\left(\dfrac{1}{5}+\dfrac{1}{95}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)\)
\(=\left(\dfrac{99}{99}+\dfrac{1}{99}\right)+\left(\dfrac{97}{3.97}+\dfrac{3}{3.97}\right)+\left(\dfrac{95}{5.95}+\dfrac{5}{5.95}\right)+...+\left(\dfrac{51}{49.51}+\dfrac{49}{49.51}\right)\)
\(=\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}\)
Xét mẫu số : Đặt C = \(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}\)
\(=\left(\dfrac{1}{1.99}+\dfrac{1}{99.1}\right)+\left(\dfrac{1}{3.97}+\dfrac{1}{97.3}\right)+...+\left(\dfrac{1}{49.51}+\dfrac{1}{51.49}\right)\)
\(=2.\dfrac{1}{1.99}+2.\dfrac{1}{3.97}+...+2.\dfrac{1}{49.51}\)
\(=2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)\)
Thay B và C vào A ta có :
\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(\Rightarrow A=\dfrac{100}{2}=50\)
Vậy A = 50
b, Xét mẫu số : Đặt C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
\(=\dfrac{100-1}{1}+\dfrac{100-2}{2}+\dfrac{100-3}{3}+...+\dfrac{100-99}{99}\)
\(=100-1+\dfrac{100}{2}-1+\dfrac{100}{3}-1+...+\dfrac{100}{99}-1\)
\(=\left(100+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}\right)-\left(1+1+...+1\right)\)
Đặt D = 1 + 1 + ... + 1
Số số hạng của tổng D là : ( 99 - 1 ) : 1 + 1 = 99 ( số hạng )
\(\Rightarrow D=1.99=99\)
Thay D = 99 ta có :
\(C=100\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-99\)
\(=100+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-99\)
\(=\left(100-99\right)+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)\)
\(=1+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)\)
\(=\dfrac{100}{100}+100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)
Thay vào đề bài , ta có :
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
Vậy \(B=\dfrac{1}{100}\)