HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
* Trạng thái 1: T1 = 273 + 30 = 303 K
p1 = 2 bar
* Trạng thái 2: T2 = ? p2 = 2p1
* Vì thể tích bình không đổi nên:
\(\frac{P1}{T1}=\frac{P2}{T2}\Rightarrow T2=\frac{P2.T1}{P1}=\frac{2P1.T1}{P1}\) = 2T1 = 606 K
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
SL: 1008
SB:1006
\(a-b=13\Rightarrow a=b+13\)
thay \(a=b+13\) vào biểu thức thì ta có:
\(\frac{3a-b}{2a+13}-\frac{3b-a}{2b-13}=\frac{3\left(b+13\right)-b}{2\left(b+13\right)+13}-\frac{3b-\left(b+13\right)}{2b-13}\)
\(=\frac{2b+39}{2b+39}-\frac{2b-13}{2b-13}=1-1=0\)
mk thứ 2 tuần sau mới nghỉ hè
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
vì \(\frac{39}{200}< 1\) nên A < 1
Có 1 số n thỏa mãn nhé!
x2 + 2y2 + 2xy + 3y - 4 = 0
\(\Leftrightarrow\left(y+4\right)\left(y-1\right)=-\left(x+y\right)^2\le0\)
\(\Rightarrow-4\le y\le1\) vì y thuộc Z nên \(y\in\left\{-4;-3;-2;-1;0;1\right\}\)
6 cặp (x;y) thỏa mãn pt là:
(4;-4),(1;-1),(5;-3),(1;3),(2;0),(-2;0)
(x-1)^5 = -243
(x-1)^5 = (-3)^5
x-1 = -3
x= -3 + 1
x= -2
CM : \(\frac{1}{\left(\sqrt{n}+\sqrt{n+1}\right)}=\sqrt{n+1}-\sqrt{n}\) (nhân chéo lên ta thấy đpcm)
áp dụng cho S ta được:
\(\Rightarrow S=\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(S=\sqrt{100}-\sqrt{1}\)
S = 10 - 1 = 9 = 3^2 là số chính phương