HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có : \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(\Leftrightarrow\dfrac{a+b-c}{c}+2=\dfrac{b+c-a}{a}+2=\dfrac{c+a-b}{b}+2\)
\(\Leftrightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\) (* )
Từ (*) => xảy ra 2 trường hợp : \(\left\{{}\begin{matrix}a=b=c\\a+b+c=0\end{matrix}\right.\)
Xét TH1 : Khi \(a=b=c.\)
\(b=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Xét TH2 : Khi \(a+b+c=0\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(b=\left(\dfrac{a+b}{a}\right)\left(\dfrac{a+c}{c}\right)\left(\dfrac{b+c}{b}\right)=\left(\dfrac{-c}{a}\right)\left(\dfrac{-b}{c}\right)\left(\dfrac{-a}{b}\right)=-1.\)
Ta có : \(\dfrac{x}{y}=\dfrac{3}{4};\dfrac{y}{z}=\dfrac{5}{6}\)
\(\Rightarrow4x=3y;6y=5z\)
\(\Leftrightarrow8x=6y=5z.\)
\(\Rightarrow y=\dfrac{8x}{6}=\dfrac{4}{3}x\)
Thay vào A ta có :
\(A=\dfrac{2x+3y+5z}{y+5z}=\dfrac{2x+4x+8x}{\dfrac{4}{3}x+8x}=\dfrac{3}{2}.\)
Gọi quãng đường từ Thành phố HCM đến vũng tàu là x( km ) .
Theo đề bài ta có phương trình :
\(\dfrac{x}{40}+2+\dfrac{x}{30}=\dfrac{43}{4}\)
\(\Leftrightarrow\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{35}{4}\)
\(\Leftrightarrow x\left(\dfrac{1}{40}+\dfrac{1}{30}\right)=\dfrac{35}{4}\)
\(\Leftrightarrow x=150\)
Vậy quãng đường từ thành phố HCM đến Vũng tàu là 150 km .
\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)
Ta thấy : x = 0 không phải là 1 nghiệm của phương trinh chia cả 2 về cho x2 ta được :
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}-5\right)=45\)
Đặt \(t=x+\dfrac{6}{x}+1\), ta được :
\(\left(t+6\right)\left(t-6\right)=45\)
\(\Leftrightarrow t^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}t=9\\t=-9\end{matrix}\right.\)
Thay từng t vào r tính.
\(Q=a+b+\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow Q=\left(\dfrac{1}{a}+4a\right)+\left(\dfrac{1}{b}+4b\right)-3\left(a+b\right)\)
Áp dụng BĐT Cô si ta được :
\(Q\ge4+4-3\left(a+b\right)\ge4+4-3=5\)
Vậy GTNN của Q là 5. Dấu "=" xảy ra khi và chỉ khi \(a=b=\dfrac{1}{2}\)
Sai đề k bạn ??