Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 55
Số lượng câu trả lời 508
Điểm GP 6
Điểm SP 146

Người theo dõi (5)

Water drop
Bear
JennnnnTNT
trang anh learntv
Jackson Williams

Đang theo dõi (3)

ILoveMath
Bear
trang anh learntv

Câu trả lời:

Để tìm giá trị của m để giá trị nhỏ nhất của biểu thức A = m.sin(x) - cos(x)cos(x) - 2√(3) - √(5) - 2 không nhỏ hơn 2, chúng ta có thể sử dụng phương pháp tìm giá trị nhỏ nhất của hàm.

Để tìm giá trị nhỏ nhất của biểu thức A, chúng ta có thể tìm đạo hàm của A theo x và đặt nó bằng 0, sau đó giải phương trình để tìm giá trị của x. Sau đó, chúng ta sẽ thay giá trị của x vào biểu thức A và tìm giá trị tương ứng của m.

Bước 1: Tính đạo hàm của A theo x: A' = m.cos(x) - 2cos(x)sin(x) = cos(x)(m - 2sin(x))

Bước 2: Đặt đạo hàm bằng 0 và giải phương trình: cos(x)(m - 2sin(x)) = 0

Điều này đồng nghĩa với việc cos(x) = 0 hoặc m - 2sin(x) = 0.

Nếu cos(x) = 0, thì x có thể là π/2 + kπ hoặc 3π/2 + kπ, với k là số nguyên.

Nếu m - 2sin(x) = 0, thì m = 2sin(x).

Bước 3: Thay giá trị của x vào biểu thức A và tìm giá trị tương ứng của m: A = m.sin(x) - cos(x)cos(x) - 2√(3) - √(5) - 2

Chúng ta cần tìm giá trị nhỏ nhất của biểu thức A, vì vậy chúng ta sẽ tìm giá trị nhỏ nhất của m = 2sin(x) trong các trường hợp x là π/2 + kπ hoặc 3π/2 + kπ.

Từ đó, chúng ta có thể tìm giá trị nhỏ nhất của m để biểu thức A không nhỏ hơn 2.

Lưu ý rằng quá trình này có thể phức tạp và có thể cần sử dụng phần mềm hoặc máy tính để giải phương trình và tính toán các giá trị tương ứng.

Câu trả lời:

Để chứng minh tam giác ABM vuông, ta cần chứng minh rằng đường cao của tam giác ABM đi qua tâm O của đường tròn (O).

Giả sử đường cao của tam giác ABM cắt AB tại điểm H. Ta cần chứng minh OH là đường cao của tam giác ABM.

Vì tam giác ABM có đường kính AB nên ta có:

AH = BH = AB/2 (vì AHB là tam giác cân)

Vì tam giác ABM có đường cao OH nên ta có:

AM^2 = AH^2 + HM^2

BM^2 = BH^2 + HM^2

Từ đó suy ra:

AM^2 + BM^2 = AH^2 + BH^2 + 2HM^2

Vì AH = BH nên ta có:

AM^2 + BM^2 = 2AH^2 + 2HM^2

Nhưng ta biết rằng:

AH^2 + HM^2 = OH^2 (vì tam giác AOH vuông tại O)

Vậy:

AM^2 + BM^2 = 2OH^2

Từ đó suy ra:

AM^2 + BM^2 = 2R^2 (với R là bán kính đường tròn (O))

Điều này chỉ ra rằng đường cao OH của tam giác ABM là đường cao đi qua tâm O của đường tròn (O), từ đó suy ra tam giác ABM là tam giác vuông tại M.

Để chứng minh tam giác ABK vuông, ta cần chứng minh rằng đường cao của tam giác ABK đi qua tâm O của đường tròn (O).

Giả sử đường cao của tam giác ABK cắt AB tại điểm H'. Ta cần chứng minh OH' là đường cao của tam giác ABK.

Vì tam giác ABK có đường kính AB nên ta có:

AH' = BH' = AB/2 (vì AHB' là tam giác cân)

Vì tam giác ABK có đường cao OH' nên ta có:

AK^2 = AH'^2 + KH'^2

BK^2 = BH'^2 + KH'^2

Từ đó suy ra:

AK^2 + BK^2 = AH'^2 + BH'^2 + 2KH'^2

Vì AH' = BH' nên ta có:

AK^2 + BK^2 = 2AH'^2 + 2KH'^2

Nhưng ta biết rằng:

AH'^2 + KH'^2 = OH'^2 (vì tam giác AOH' vuông tại O)

Vậy:

AK^2 + BK^2 = 2OH'^2

Từ đó suy ra:

AK^2 + BK^2 = 2R^2 (với R là bán kính đường tròn (O))

Điều này chỉ ra rằng đường cao OH' của tam giác ABK là đường cao đi qua tâm O của đường tròn (O), từ đó suy ra tam giác ABK là tam giác vuông tại K.

Vậy, ta đã chứng minh được rằng tam giác ABM và tam giác ABK đều là tam giác vuông.

Câu trả lời:

Để giải bài toán này, ta sẽ bắt đầu bằng việc tìm giá trị của a + b + c và ab + bc + ca.

Theo đề bài, ta có: a.b.c = 1

Đặt S = a + b + c và P = ab + bc + ca. Ta có thể viết lại biểu thức ban đầu như sau: (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca) (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8S - 8P

Để đơn giản hóa công thức, ta sẽ nhân cả hai vế của phương trình với a^2b^2c^2: (a^2b^2c^2)(a^2 + b^2 + c^2) - (a^2b^2c^2)(1/a^2 + 1/b^2 + 1/c^2) = 8(a^2b^2c^2)(S - P)

Sau khi nhân và rút gọn, ta được: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(a^2b^2c^2)(S - P)

Do a.b.c = 1, ta có: a^2b^2c^2 = 1

Thay lại vào phương trình trên, ta có: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(S - P)

Rút gọn các thành phần, ta được: a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 = 8(S - P)

Ta có thể viết lại đẹp hơn bằng cách nhân 2 vào cả hai vế: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16(S - P)

Rút gọn, ta được: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16S - 16P

Từ đó, ta có: 16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Chú ý rằng: P = ab + bc + ca S = a + b + c

Tiếp theo, ta sẽ xem xét biểu thức P = 1/a-1 + 1/b-1 + 1/c-1. Ta có thể viết lại biểu thức này như sau: P = (1/a + 1/b + 1/c) - 3

Ta biết rằng abc = 1, do đó: 1/a + 1/b + 1/c = ab + bc + ca

Thay vào biểu thức P, ta có: P = (ab + bc + ca) - 3

Như vậy, biểu thức P có thể được thay bằng biểu thức P = P - 3.

Tiếp theo, ta sẽ sử dụng kết quả từ phương trình trên để tính giá trị của P.

16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Thay P = P - 3 vào phương trình trên, ta có: 16(P - 3) - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Rút gọn và chuyển thành phương trình bậc hai: 16P - 48 - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

8P - 24 - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2

8P - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 + 24

8(P - S) = (a^2b^2 + a^2c^2 + b^2c^2)^2 - (a^2b^2 + a^2c^2 + b^2c^2) - a^2b^2 - a^2c^2 - b^2c^2 + 24

Đặt Q = a^2b^2 + a^2c^2 + b^2c^2, ta có: 8(P - S) = Q^2 - Q - Q + 24

8(P - S) = Q^2 - 2Q + 24

8(P - S) = (Q - 4)^2

Ta có thể viết lại thành phương trình: (P - S) = (Q - 4)^2 / 8

Do đó, giá trị của P - S là bình phương của một số chia cho 8.

Tuy nhiên, chúng ta không có thông tin cụ thể về giá trị của Q, vì vậy không thể tìm ra giá trị chính xác của P - S.

Vì vậy, không thể tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1 chỉ dựa trên thông tin đã cho trong bài toán.