HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1) Theo đề bài ta có `{(CD bot a),(CD bot b):}`
`=> a //b ` ( từ vuông góc đến song song)
2) Ta có `a//b`
`=> hat{DBA} = hat{A_2}` ( hai góc so le trong)
`=> hat{DBA} = hat{A_2} =45^o`
Lại có : ` hat{A_1} + hat{A_2} =180^0` ( kề bù)`
`=> hat{A_1} = 180^0 - hat{A_2} = 180^0 -45^0 = 135^0`
mà `hat{A_1} =hat{A_3} ` ( đối đỉnh)
`=> hat{A_1} =hat{A_3} = 135^0`
Vậy `hat{A_1} =135^0`
`hat{A_3} =135^0`
`hat{A_2} = 45^0`
`3x^2(2x+1)-6x(1+2x)=0 `
`<=> (3x^2 -6x ) (2x+1) =0`
`<=> 3x(x-2)(2x+1) =0`
`@TH1 : 3x =0 => x=0`
`@TH2 : x-2 =0 => x =2`
`@TH3 : 2x+1 =0 => 2x=-1 => x =-1/2`
Vậy `S={0;2;-1/2}`
sai thì thôi nhó :q
`a)Đ k : x ne +- 3`
\(A=\sqrt{\dfrac{1}{x^2-6x+9}}-\dfrac{6}{x^2-9}\)
\(A=\dfrac{\sqrt{1}}{\sqrt{\left(x-3\right)^2}}-\dfrac{6}{\left(x+3\right)\left(x-3\right)}=\dfrac{1}{\left|x-3\right|}-\dfrac{6}{\left(x+3\right)\left(x-3\right)}\)
\(A=\dfrac{\left(x+3\right)\left(x-3\right)-\left(x-3\right)6}{\left(x-3\right)^2\left(x+3\right)}=\dfrac{\left(x+3-6\right)\left(x-3\right)}{\left(x-3\right)^2\left(x+3\right)}\)
\(A=\dfrac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x+3\right)}=\dfrac{1}{x+3}\)
`a) x(x+1)+4(x+1)=0`
`<=> (x+4)(x+1) =0`
`<=> [(x+4=0),(x+1=0):}`
`<=> [(x=-4),(x=-1):}`
Vậy `S={-4;-1}`
`b) x^2 -x =0`
`<=> x(x-1) =0`
`<=> [(x=0),(x=1):}`
Vậy `S={0;1}`
`c) 3x(x-3)-x+3=0`
`<=> 3x(x-3) - (x-3) =0`
`<=> (3x-1)(x-3) =0`
`<=> [(3x=1),(x-3=0):}`
`<=> [(x=1/3),(x=3):}`
Vậy `S={1/3;3}`
Bài 2
`a)M=x^2 -3x +10 = [x^2 - 2 * 3/2 *x + (3/2)^2 ] +10 -3/2`
`M = (x-3/2)^2 + 17/2 >= 17/2∀x`
Dấu ''='' xảy ra khi : `x-3/2 =0`
`=> x=3/2`
`b) P=y^2 +8y +15 = (y^2 + 2*y*4 + 4^2 ) +15 -4^2`
`P= (y+4)^2 -1 >= -1 ∀x`
Dấu ''='' xảy ra khi `y+4 =0`
`=> y =0-4=-4`
Bài 3
`A=12a -4a^2 +3 = - ( 4a^2 -12a -3) = -{[(2a)^2 - 2*2a*3 + 3^2] -3 -3^2}`
`A = - [(2a-3)^2 -12] = 12 - (2a-3)^2 <= 12`
dấu ''='' xảy ra khi `2a-3 =0 => 2a =3`
`=> a = 3/2`
`B =3a-a^2 +3 = -(a^2 -3a -3) = -{[a^2 - 2*a*3/2 + (3/2)^2 ] - 3-(3/2)^2}`
`B = -[(a-3/2)^2 - 21/4] = 21/4 -(a-3/2)^2 <= 21/4`
dấu ''='' xảy ra khi : ` a-3/2 =0 => a =3/2`
`<=> [(3x=0),(x-2=0),(2x=-1):}`
`<=> `\(\left[{}\begin{matrix}x=0\\x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\)