Bài 5. Khoảng cách

Giải mục 2 trang 100, 101 (SGK Cánh Diều)

Hướng dẫn giải

Gợi nên khái niệm khoảng cách từ một điểm đến một mặt phẳng

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 2 trang 100, 101 (SGK Cánh Diều)

Hướng dẫn giải

loading...

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\\AI \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAI} \right)\\\left. \begin{array}{l} \Rightarrow BC \bot AH\\AH \bot SI\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right)\end{array}\)

Vậy \(d\left( {A,\left( {SBC} \right)} \right) = AH\).

 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 3 trang 102 (SGK Cánh Diều)

Hướng dẫn giải

a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).

Kẻ \(AH \bot \Delta ',BK \bot \Delta '\left( {H,K \in \Delta '} \right)\)

\(ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)

\( \Rightarrow d\left( {A,\Delta '} \right) = d\left( {B,\Delta '} \right)\)

Vậy khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta '\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).

b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa hai đường thẳng song song.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 3 trang 102 (SGK Cánh Diều)

Hướng dẫn giải

Các cột đèn được dựng thẳng đứng và vuông góc với mặt đường thì chúng song song với nhau. Do đó, đoạn thẳng nối hai chân cột chính là khoảng cách giữa hai đường thẳng song song.

Ta có thể nói khoảng cách giữa hai cột đèn đó là 5 m.

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 4 trang 102, 103 (SGK Cánh Diều)

Hướng dẫn giải

a) Trên đường thẳng \(\Delta \) lấy điểm \(B\) khác \(A\).

Kẻ \(AH \bot \left( P \right),BK \bot \left( P \right)\left( {H,K \in \left( P \right)} \right)\)

\( \Rightarrow ABKH\) là hình chữ nhật \( \Rightarrow AH = BK\)

\( \Rightarrow d\left( {A,\left( P \right)} \right) = d\left( {B,\left( P \right)} \right)\)

Vậy khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\) không phụ thuộc vào vị trí của điểm \(A\) trên đường thẳng \(\Delta \).

b) Khoảng cách đó gợi nên khái niệm khoảng cách giữa đường thẳng và mặt phẳng song song.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 102, 103 (SGK Cánh Diều)

Hướng dẫn giải

Kẻ \(SH\perp\left(ABC\right)\) \(\Rightarrow\widehat{SAH}=60^0\)

Áp dụng hệ thức lượng vào tam giác vuông có:

\(tan60^0=\dfrac{SH}{SA}\Leftrightarrow SH=\sqrt{3}a\)

Ta có M và N lần lượt là trung điểm của SA và SB

\(\Rightarrow\) MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//BC\)

mà \(BC\subset\left(ABC\right)\) , \(MN⊄(ABC) \)

\(\Rightarrow MN//\left(ABC\right)\)

\(d\left(MN,\left(ABC\right)\right)=d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)=\dfrac{\sqrt{3}}{2}.a\)

Vậy \(d\left(MN,\left(ABC\right)\right)=\dfrac{\sqrt{3}}{2}a\)

Chứng minh \(d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)\)

Kẻ \(MK\perp\left(ABC\right)\Rightarrow MK//SH\)

Áp dụng định lý thales: \(\dfrac{MK}{SH}=\dfrac{AM}{AS}=\dfrac{1}{2}\)

\(\Rightarrow MK=\dfrac{1}{2}SH\Rightarrow d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)\) (đpcm)

(Trả lời bởi Gấuu)
Thảo luận (1)

Giải mục 4 trang 102, 103 (SGK Cánh Diều)

Hướng dẫn giải

a) Khoảng cách đó gợi nên khái niệm khoảng cách giữa hai mặt phẳng song song.

b)

Trên mặt phẳng \(\left( P \right)\) lấy điểm \(J\) khác \(I\).

Kẻ \(JH \bot \left( Q \right)\left( {H \in \left( Q \right)} \right)\)

\( \Rightarrow HKIJ\) là hình chữ nhật \( \Rightarrow IK = JH\)

\( \Rightarrow d\left( {I,\left( Q \right)} \right) = d\left( {J,\left( Q \right)} \right)\)

Vậy khoảng cách \(IK\) từ điểm \(I\) đến mặt phẳng \(\left( Q \right)\) không phụ thuộc vào vị trí của điểm \(I\) trong mặt phẳng \(\left( P \right)\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 102, 103 (SGK Cánh Diều)

Hướng dẫn giải

loading...

Gọi \(H\) là hình chiếu vuông góc của \(A'\) lên \(\left( {ABC} \right)\)

\(\begin{array}{l} \Rightarrow A'H \bot \left( {ABC} \right)\\ \Rightarrow \left( {AA',\left( {ABC} \right)} \right) = \left( {AA',AH} \right) = \widehat {A'AH}\end{array}\)

\(\Delta AA'H\) vuông tại \(H \Rightarrow A'H = AA'.\sin \widehat {A'AH} = \frac{{a\sqrt 3 }}{2}\)

Vì \(\left( {ABC} \right)\parallel \left( {A'B'C'} \right)\) nên \(d\left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = d\left( {A',\left( {ABC} \right)} \right) = A'H = \frac{{a\sqrt 3 }}{2}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Giải mục 6 trang 10, 105, 106 (SGK Cánh Diều)

Hướng dẫn giải

c vừa cắt, vừa vuông góc với a,b

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 6 trang 10, 105, 106 (SGK Cánh Diều)

Hướng dẫn giải

loading...

Gọi \(I\) là trung điểm của \(BC\).

Tam giác \(ABC\) đều \( \Rightarrow AI \bot BC\)

\(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AI\)

\( \Rightarrow d\left( {SA,BC} \right) = AI = \frac{{BC\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)